Sphingomonas wittichii Strain RW1 Genome-Wide Gene Expression Shifts in Response to Dioxins and Clay
نویسندگان
چکیده
Sphingomonas wittichii strain RW1 (RW1) is one of the few strains that can grow on dibenzo-p-dioxin (DD). We conducted a transcriptomic study of RW1 using RNA-Seq to outline transcriptional responses to DD, dibenzofuran (DF), and the smectite clay mineral saponite with succinate as carbon source. The ability to grow on DD is rare compared to growth on the chemically similar DF even though the same initial dioxygenase may be involved in oxidation of both substrates. Therefore, we hypothesized the reason for this lies beyond catabolic pathways and may concern genes involved in processes for cell-substrate interactions such as substrate recognition, transport, and detoxification. Compared to succinate (SUC) as control carbon source, DF caused over 240 protein-coding genes to be differentially expressed, whereas more than 300 were differentially expressed with DD. Stress response genes were up-regulated in response to both DD and DF. This effect was stronger with DD than DF, suggesting a higher toxicity of DD compared to DF. Both DD and DF caused changes in expression of genes involved in active cross-membrane transport such as TonB-dependent receptor proteins, but the patterns of change differed between the two substrates. Multiple transcription factor genes also displayed expression patterns distinct to DD and DF growth. DD and DF induced the catechol ortho- and the salicylate/gentisate pathways, respectively. Both DD and DF induced the shared down-stream aliphatic intermediate compound pathway. Clay caused category-wide down-regulation of genes for cell motility and chemotaxis, particularly those involved in the synthesis, assembly and functioning of flagella. This is an environmentally important finding because clay is a major component of soil microbes' microenvironment influencing local chemistry and may serve as a geosorbent for toxic pollutants. Similar to clay, DD and DF also affected expression of genes involved in motility and chemotaxis.
منابع مشابه
Proteomic Profiling of the Dioxin-Degrading Bacterium Sphingomonas wittichii RW1
Sphingomonas wittichii RW1 is a bacterium of interest due to its ability to degrade polychlorinated dioxins, which represent priority pollutants in the USA and worldwide. Although its genome has been fully sequenced, many questions exist regarding changes in protein expression of S. wittichii RW1 in response to dioxin metabolism. We used difference gel electrophoresis (DIGE) and matrix-assisted...
متن کاملGenome-Wide Analysis of Salicylate and Dibenzofuran Metabolism in Sphingomonas Wittichii RW1
Sphingomonas wittichii RW1 is a bacterium isolated for its ability to degrade the xenobiotic compounds dibenzodioxin and dibenzofuran (DBF). A number of genes involved in DBF degradation have been previously characterized, such as the dxn cluster, dbfB, and the electron transfer components fdx1, fdx3, and redA2. Here we use a combination of whole genome transcriptome analysis and transposon lib...
متن کاملCharacterization of denitrifying activity by the alphaproteobacterium, Sphingomonas wittichii RW1
Sphingomonas wittichii RW1 has no reported denitrifying activity yet encodes nitrite and nitric oxide reductases. The aims of this study were to determine conditions under which S. wittichii RW1 consumes nitrite (NO(-) 2) and produces nitrous oxide (N2O), examine expression of putative genes for N-oxide metabolism, and determine the functionality of chromosomal (ch) and plasmid (p) encoded quin...
متن کاملQuantitative PCR for tracking the megaplasmid-borne biodegradation potential of a model sphingomonad.
We developed a quantitative PCR method for tracking the dxnA1 gene, the initial, megaplasmid-borne gene in Sphingomonas wittichii RW1's dibenzo-p-dioxin degradation pathway. We used this method on complex environmental samples and report on growth of S. wittichii RW1 in landfill leachate, thus furnishing a novel tool for monitoring megaplasmid-borne, dioxygenase-encoding genes.
متن کاملPresence of Bacterial Virulence Gene Homologues in the dibenzo-p-dioxins degrading bacterium Sphingomonas wittichii
Sphingomonas wittichii, a close relative of the human pathogen Sphingomonas paucimobilis, is a microorganism of great interest to the bioremediation community for its ability of biodegradation to a large number of toxic polychlorinated dioxins. In the present study we investigated the presence of different virulence factors and genes in S. wittichii. We utilized phylogenetic, comparative genomi...
متن کامل